A plane wave of sound traveling in air is incident upon a plane surface of a liquid. The angle of incidence is $60^o.$ The speed of sound in air is $300 \,m /s$ and in the liquid it is $600\, m /s .$ Assume Snell’s law to be valid for sound waves.
The wave will refract into liquid away from normal
The wave refract into liquid towards the normal
The wave will reflect back into air
none of these
A string of length $1\,\,m$ and linear mass density $0.01\,\,kgm^{-1}$ is stretched to a tension of $100\,\,N.$ When both ends of the string are fixed, the three lowest frequencies for standing wave are $f_1, f_2$ and $f_3$. When only one end of the string is fixed, the three lowest frequencies for standing wave are $n_1, n_2$ and $n_3$. Then
If vibrations of a string are to be increased by a factor of two, then tension in the string must be made
The tension of a stretched string is increased by $69\%$. In order to keep its frequency of vibration constant, its length must be increased by .... $\%$
A person is producing wave in string by moving his hand first up and then down. If frequency is $\frac{1}{8}\,Hz$ then find out time taken by particle which is at a distance of $9\,m$ from source to move to lower extreme first time .... $s$ . (Given $\lambda = 24\, m$)
When an air column at $15\,^oC$ and a tunning fork are sounded together then $4$ beats per second are produced, the frequency of the fork is less then that of air column. When the temperature falls to $10\,^oC$ , then the beat frequency decreases by one. The frequency of the fork will be ..... $Hz$ $[V_{sound}$ at $0\,^oC = 332\,m/s]$