A point charge $2 \times 10^{-2}\,C$ is moved from $P$ to $S$ in a uniform electric field of $30\,NC ^{-1}$ directed along positive $x$-axis. If coordinates of $P$ and $S$ are $(1,2$, $0) m$ and $(0,0,0) m$ respectively, the work done by electric field will be $.........\,mJ$
$1200$
$600$
$-600$
$-1200$
Two point charges $100\,\mu \,C$ and $5\,\mu \,C$ are placed at points $A$ and $B$ respectively with $AB = 40\,cm$. The work done by external force in displacing the charge $5\,\mu \,C$ from $B$ to $C$, where $BC = 30\,cm$, angle $ABC = \frac{\pi }{2}$ and $\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}\,N{m^2}/{C^2}$.........$J$
If one of the two electrons of a $H _{2}$ molecule is removed, we get a hydrogen molecular ion $H _{2}^{+}$. In the ground state of an $H _{2}^{+}$, the two protons are separated by roughly $1.5\;\mathring A,$ and the electron is roughly $1 \;\mathring A$ from each proton. Determine the potential energy of the system. Specify your choice of the zero of potential energy.
In the electric field of a point charge $q$, a certain charge is carried from point $A$ to $B, C, D$ and $E$. Then the work done
Why gravitational forces or spring forces are conservative forces ?
In the figure the charge $Q$ is at the centre of the circle. Work done is maximum when another charge is taken from point $P$ to