धनात्मक $\mathrm{x}$-अक्ष के अनुदिश निर्देशित $30 \mathrm{NC}^{-1}$ मान के किसी एकसमान विद्युत क्षेत्र में $2 \times 10^{-2} \mathrm{C}$ का एक बिन्दु आवेश बिन्दु $\mathrm{P}$ से $\mathrm{S}$ पर जाता है। यदि $\mathrm{P}$ एवं $\mathrm{S}$ के निर्देशांक क्रमशः $(1,2,0) \mathrm{m}$ एवं $(0,0,0) \mathrm{m}$ हैं, तो $.........\,mJ$ प्रक्रम मे विद्युत क्षेत्र द्वारा किए गए कार्य का मान होगा।

  • [JEE MAIN 2023]
  • A

    $1200$

  • B

    $600$

  • C

    $-600$

  • D

    $-1200$

Similar Questions

बिदु $(0,0,-a)$ तथा $(0,0, a)$ पर दो आवेश क्रमशः $-q$ और $+q$ स्थित हैं।

(a) बिदुओं $(0,0, z)$ और $(x, y,0)$ पर स्थिरवैध्यूत विभव क्या है?

(b) मूल बिंदु से किसी बिंदु की दूरी $r$ पर विभव की निर्भरता ज्ञात कीजिए, जबकि $r / a>>1$ है।

(c) $x$ -अक्ष पर बिदु $(5,0,0)$ से बिद $(-7,0,0)$ तक एक परीक्षण आवेश को ले जाने में कितना कार्य करना होगा ? यदि परीक्षण आवेश के उन्हीं बिदुओं के बीच $x$ -अक्ष से होकर न ले जाएँ तो क्या उत्तर बद्ल जाएगा?

एक कण का द्रव्यमान $‘m’$ तथा आवेश $‘q’$ है। इस कण को विभवान्तर $V$ वोल्ट से त्वरित किया जाता है। इसकी ऊर्जा होगी

चित्र में आतंरिक (छायांकित) क्षेत्र $A$ एक $r_{-1}=1$ त्रिज्या के गोले को प्रदर्शित करता है, जिसके अन्दर विधुत  आवेश घनत्व (electrostatic charge density) $\rho_{-1}=k r$ केंद्र से त्रिज्य-दूरी $r$ के साथ बदलता है, जहां $k$ धनात्मक है। $r_B$ त्रिज्या के बाह्य (outer) गोलीय खोल $B$ में,  विधुत आवेश घनत्व $\rho_B=\frac{2 k}{r}$ से बदलता है। मान लें कि यूनिट्स का ध्यान रखा गया है। सभी भौतिकी मात्रायें (quantities) SI मानक में है।

निम्न में से कौन सा (से) कथन सही है (हैं)।

  • [IIT 2022]

नीचे दिए गए चित्र में एक आवेश विन्यास जिसे विध्यूत चतुर्ध्रुवी कहा जाता है, दर्शाया गया है। चतुर्ध्रुवी के अक्ष पर स्थित किसी बिंदु के लिए $r$ पर विभव की निर्भरता प्राप्त कीजिए जहाँ $r / a>>1$ । अपने परिणाम की तुलना एक विध्यूत द्विध्रुव व विध्यूत एकल ध्रुव (अर्थात् किसी एकल आवेश ) के लिए प्राप्त परिणामों से कीजिए।

एक त्रिज्या $R$ तथा एकसमान धनात्मक आवेश घनत्व (positive charge density) $\sigma$ की चक्रिका को $x y$ तल पर रखा गया है और इसका केंद्र मूल बिंदु पर है। कूलाम्ब विभव $z$ अक्ष पर $V(z)=\frac{\sigma}{2 \epsilon_0}\left(\sqrt{R^2+z^2}-z\right)$ है। एक कण जिसका धनात्मक आवेश $q$ है को प्रारंभ में विरामावस्था में $z$ अक्ष पर $z=z_0$ तथा $z_0>0$ स्थिति पर रखा जाता है। इसके अतिरिक्त एक कण पर उध्वार्धर (vertical) बल $\vec{F}=-c \hat{k}$ लगता है, जहाँ $c>0$ है। $\beta=\frac{2 c \epsilon_0}{q \sigma}$ लें। निम्न में से कौन सा (से) कथन सही है (हैं)।

$(A)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{25}{7} R$ के लिए कण मूल बिंदु (origin) पर पहुँचता है।

$(B)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{3}{7} R$ के लिये कण मूल बिंदु पर पहुँचता है।

$(C)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{R}{\sqrt{3}}$ के लिए कण $z=z_0$ पर वापस आता है।

$(D)$ $\beta>1$ तथा $z_0>0$ के लिये कण हमेशा मूल बिंदु पर पहुँचता है।

  • [IIT 2022]