Gujarati
Hindi
2.Motion in Straight Line
medium

A point moves such that its displacement as a function of time is given by $x^3$ = $t^3 + 1$. Its acceleration as a function of time $t$ will be

A$\frac{2}{x^5}$
B$\frac{2t}{x^5}$
C$\frac{2t}{x^4}$
D$\frac{2t^2}{x^5}$

Solution

$x^{3}=t^{3}+1 \Rightarrow 3 x^{2} \frac{d x}{d t}=3 t^{2}$
$\mathrm{x}^{2} \mathrm{v}=\mathrm{t}^{2} \Rightarrow 2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}} \mathrm{v}+\mathrm{x}^{2} \mathrm{a}=2 \mathrm{t}$
$2 \mathrm{x} \frac{\mathrm{t}^{4}}{\mathrm{x}^{4}}+\mathrm{x}^{2} \mathrm{a}=2 \mathrm{t} \Rightarrow \mathrm{x}^{2} \mathrm{a}=2 \mathrm{t}-\frac{2 \mathrm{t}^{4}}{\mathrm{x}^{3}}$
$a=\frac{2 t\left[x^{3}-t^{3}\right]}{x^{5}} \Rightarrow a=\frac{2 t}{x^{5}}$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.