- Home
- Standard 11
- Physics
2.Motion in Straight Line
medium
A point moves such that its displacement as a function of time is given by $x^3$ = $t^3 + 1$. Its acceleration as a function of time $t$ will be
A$\frac{2}{x^5}$
B$\frac{2t}{x^5}$
C$\frac{2t}{x^4}$
D$\frac{2t^2}{x^5}$
Solution
$x^{3}=t^{3}+1 \Rightarrow 3 x^{2} \frac{d x}{d t}=3 t^{2}$
$\mathrm{x}^{2} \mathrm{v}=\mathrm{t}^{2} \Rightarrow 2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}} \mathrm{v}+\mathrm{x}^{2} \mathrm{a}=2 \mathrm{t}$
$2 \mathrm{x} \frac{\mathrm{t}^{4}}{\mathrm{x}^{4}}+\mathrm{x}^{2} \mathrm{a}=2 \mathrm{t} \Rightarrow \mathrm{x}^{2} \mathrm{a}=2 \mathrm{t}-\frac{2 \mathrm{t}^{4}}{\mathrm{x}^{3}}$
$a=\frac{2 t\left[x^{3}-t^{3}\right]}{x^{5}} \Rightarrow a=\frac{2 t}{x^{5}}$
$\mathrm{x}^{2} \mathrm{v}=\mathrm{t}^{2} \Rightarrow 2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}} \mathrm{v}+\mathrm{x}^{2} \mathrm{a}=2 \mathrm{t}$
$2 \mathrm{x} \frac{\mathrm{t}^{4}}{\mathrm{x}^{4}}+\mathrm{x}^{2} \mathrm{a}=2 \mathrm{t} \Rightarrow \mathrm{x}^{2} \mathrm{a}=2 \mathrm{t}-\frac{2 \mathrm{t}^{4}}{\mathrm{x}^{3}}$
$a=\frac{2 t\left[x^{3}-t^{3}\right]}{x^{5}} \Rightarrow a=\frac{2 t}{x^{5}}$
Standard 11
Physics
Similar Questions
Match the following columns.
Colum $I$ | Colum $II$ |
$(A)$ $\frac{dv}{dt}$ | $(p)$ Acceleration |
$(B)$ $\frac{d|v|}{dt}$ | $(q)$ Magnitude of acceleration |
$(C)$ $\frac{dr}{dt}$ | $(r)$ Velocity |
$(D)$ $\left|\frac{d r }{d t}\right|$ | $(s)$ Magnitude of velocity |
easy