The acceleration (a)-time $(t)$ graph for a particle moving along a straight starting from rest is shown in figure. Which of the following graph is the best representation of variation of its velocity $(v)$ with time $(t)$ ?

212928-q

  • A
    212928-a
  • B
    212928-b
  • C
    212928-c
  • D
    212928-d

Similar Questions

The acceleration-time graph of a body is shown below The most probable velocity-time graph of the body is

Suggest a suitable physical situation for following graphs.

Equation of motion of a body is $\frac{d v}{d t}=-4 v+8$, where $v$ is the velocity in $m / s$ and $t$ is the time in second. Initial velocity of the particle was zero. Then,

The relation between position $( x )$ and time ( $t$ ) are given below for a particle moving along a straight line. Which of the following equation represents uniformly accelerated motion? [where $\alpha$ and $\beta$ are positive constants]

The relation between time ' $t$ ' and distance ' $x$ ' is $t=$ $\alpha x^2+\beta x$, where $\alpha$ and $\beta$ are constants. The relation between acceleration $(a)$ and velocity $(v)$ is:

  • [JEE MAIN 2024]