A positive charge $q$ is placed in a spherical cavity made in a positively charged sphere. The centres of sphere and cavity are displaced by a small distance $\vec l $ . Force on charge $q$ is :

  • A

    in the direction parallel to vector $\vec l $

  • B

    in radial direction

  • C

    in a direction which depends on the magnitude of charge density in sphere

  • D

    direction can not be determined.

Similar Questions

A hollow insulated conducting sphere is given a positive charge of $10\,\mu \,C$. ........$\mu \,C{m^{ - 2}}$ will be the electric field at the centre of the sphere if its radius is $2$ meters

  • [AIPMT 1998]

Obtain the expression of electric field by a straight wire of infinite length and with linear charge density $'\lambda '$.

Let $E_1(r), E_2(r)$ and $E_3(r)$ be the respective electric fields at a distance $r$ from a point charge $Q$, an infinitely long wire with constant linear charge density $\lambda$, and an infinite plane with uniform surface charge density $\sigma$. if $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ at a given distance $r_0$, then

  • [IIT 2014]

A long, straight wire is surrounded by a hollow, thin, long metal cylinder whose axis coincides with that of wire. The wire has a charge per unit length of $\lambda$, and the cylinder has a net charge per unit length of $2\lambda$.  Radius of the cylinder is $R$

Two concentric conducting thin spherical shells of radii $a$ and $b\  (b > a)$ are given charges $Q$ and $ -2Q$ respectively. The electric field along a line passing through centre as a function of distance $(r)$ from centre is given by