A spherical portion has been removed from a solid sphere having a charge distributed uniformly in its volume as shown in the figure. The electric field inside the emptied space is
zero everywhere
non-zero and uniform
non-uniform
zero only at its center
A conducting sphere of radius $10 \;cm$ has an unknown charge. If the electric field $20\; cm$ from the centre of the sphere is $1.5 \times 10^{3} \;N / C$ and points radially inward, what is the net charge (in $n\;C$) on the sphere?
Let $\sigma$ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region $E_{ I }, E_{ II }$ and $E_{III}$ are
Consider a sphere of radius $R$ with charge density distributed as :
$\rho(r) =k r$, $r \leq R $
$=0$ for $r> R$.
$(a)$ Find the electric field at all points $r$.
$(b)$ Suppose the total charge on the sphere is $2e$ where e is the electron charge. Where can two protons be embedded such that the force on each of them is zero. Assume that the introduction of the proton does not alter the negative charge distribution.
A solid ball of radius $R$ has a charge density $\rho $ given by $\rho = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ for $0 \leq r \leq R$. The electric field outside the ball is
Two infinitely long parallel wires having linear charge densities ${\lambda _1}$ and ${\lambda _2}$ respectively are placed at a distance of $R$ metres. The force per unit length on either wire will be $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$