A positively charged pendulum is oscillating in a uniform electric field pointing upwards. Its time period as compared to that when it oscillates without electric field
Is less
Is more
Remains unchanged
Starts fluctuating
The charge per unit length of the four quadrant of the ring is $2\ \lambda , - 2\ \lambda , \lambda$ and $- \lambda$ respectively. The electric field at the centre is
What is the magnitude of a point charge which produces an electric field of $2\, N/coulomb$ at a distance of $60\, cm$ $(1/4\pi {\varepsilon _0} = 9 \times {10^9}\,N - {m^2}/{C^2})$
Two charges $q$ and $3 q$ are separated by a distance ' $r$ ' in air. At a distance $x$ from charge $q$, the resultant electric field is zero. The value of $x$ is :
The unit of intensity of electric field is
An infinite number of electric charges each equal to $5\, nC$ (magnitude) are placed along $X$-axis at $x = 1$ $cm$, $x = 2$ $cm$ , $x = 4$ $cm$ $x = 8$ $cm$ ………. and so on. In the setup if the consecutive charges have opposite sign, then the electric field in Newton/Coulomb at $x = 0$ is $\left( {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,N - {m^2}/{c^2}} \right)$