- Home
- Standard 11
- Physics
3-2.Motion in Plane
normal
બે પ્રક્ષેપન કોણ માટે પ્રક્ષેપ નો વિસ્તાર સમાન થાય. જો $R$ એ બંને કિસ્સામાં અવધિ તથા $h_1$ અને $h_2$ એ મહત્તમ ઊંચાઈ હોય, તો $R$, $h_1$ અને $h_2$ ની વચ્ચે શું સંબંધ હોય શકે?
A$R = 4\sqrt {{h_1}{h_2}} $
B$R = 2\sqrt {{h_1}{h_2}} $
C$R = \sqrt {{h_1}{h_2}} $
Dએક પણ નહિ.
(AIIMS-2013)
Solution
$\begin{array}{l}
{h_1} = \frac{{{u^2}{{\sin }^2}\theta }}{{2g}}\\
{h_2} = \frac{{{u^2}{{\sin }^2}\left( {90 – \theta } \right)}}{{2g}},R = \frac{{{u^2}\sin 2\theta }}{g}\\
Range\,R\,is\,same\,for\,angle\,\theta \,and\,\left( {{{90}^ \circ } – \theta } \right)\\
\therefore \,{h_1}{h_2} = \frac{{{u^2}{{\sin }^2}\theta }}{{2g}} \times \frac{{{u^2}{{\sin }^2}\left( {90 – \theta } \right)}}{{2g}}\\
= \frac{{{u^4}\left( {{{\sin }^2}\theta } \right) \times {{\sin }^2}\left( {90 – \theta } \right)}}{{4{g^2}}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\sin \left( {90 – \theta } \right) = \theta \cos \theta } \right]
\end{array}$
$\begin{array}{l}
= \frac{{{u^4}{{\left( {\sin \theta \cos \theta } \right)}^2} \times {{\cos }^2}\theta }}{{4{g^2}}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\sin 2\theta = 2\sin \theta \cos \theta } \right]\\
= \frac{{{u^4}{{\left( {\sin \theta \cos \theta } \right)}^2}}}{{4{g^2}}} = \frac{{{u^4}{{\left( {\sin 2\theta } \right)}^2}}}{{16g}}\\
= \frac{{{{\left( {{u^2}\sin 2\theta } \right)}^2}}}{{16{g^2}}} = \frac{{{R^2}}}{{16}}\\
or,\,{R^2} = 16{h_1}{h_2}\,or\,R = 4\sqrt {{h_1}{h_2}}
\end{array}$
{h_1} = \frac{{{u^2}{{\sin }^2}\theta }}{{2g}}\\
{h_2} = \frac{{{u^2}{{\sin }^2}\left( {90 – \theta } \right)}}{{2g}},R = \frac{{{u^2}\sin 2\theta }}{g}\\
Range\,R\,is\,same\,for\,angle\,\theta \,and\,\left( {{{90}^ \circ } – \theta } \right)\\
\therefore \,{h_1}{h_2} = \frac{{{u^2}{{\sin }^2}\theta }}{{2g}} \times \frac{{{u^2}{{\sin }^2}\left( {90 – \theta } \right)}}{{2g}}\\
= \frac{{{u^4}\left( {{{\sin }^2}\theta } \right) \times {{\sin }^2}\left( {90 – \theta } \right)}}{{4{g^2}}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\sin \left( {90 – \theta } \right) = \theta \cos \theta } \right]
\end{array}$
$\begin{array}{l}
= \frac{{{u^4}{{\left( {\sin \theta \cos \theta } \right)}^2} \times {{\cos }^2}\theta }}{{4{g^2}}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\sin 2\theta = 2\sin \theta \cos \theta } \right]\\
= \frac{{{u^4}{{\left( {\sin \theta \cos \theta } \right)}^2}}}{{4{g^2}}} = \frac{{{u^4}{{\left( {\sin 2\theta } \right)}^2}}}{{16g}}\\
= \frac{{{{\left( {{u^2}\sin 2\theta } \right)}^2}}}{{16{g^2}}} = \frac{{{R^2}}}{{16}}\\
or,\,{R^2} = 16{h_1}{h_2}\,or\,R = 4\sqrt {{h_1}{h_2}}
\end{array}$
Standard 11
Physics