Gujarati
Hindi
3-2.Motion in Plane
hard

A projectile is fired with a speed $u$ at an angle $\theta$ with the horizontal. Its speed when its direction of motion makes an angle ‘$\alpha $’ with the horizontal is

A

$u\,\, sec\theta \,\,cos\alpha$

B

$u\,\, sec\theta\,\, sin\alpha$

C

$u \,\,cos\theta \,\,sec\alpha$

D

$u\,\, sin \theta \,\,sec\alpha$

Solution

Horizontal component of velocity $=v_{x}=u \cos \theta$

 vertical component of velocity $v_{y}=u \sin \theta-g t$

angle of velocity with horizontal $=\alpha$

$\tan a=\frac{v_{y}}{v_{x}}=\frac{(u \sin \theta-g t)}{(4 \cos \theta)}$

$t=\frac{u(\sin \theta-\cos \theta \tan \alpha)}{g}$

$v_{y}=u \cos \theta \tan \alpha$

$v_{x}=u \cos \theta$

So the speed of the projectile $=\sqrt{\left(\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}\right)}$

 $=u \cos \theta \sec \alpha$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.