A proton and an $\alpha$-particle having equal kinetic energy are projected in a uniform transverse electric field as shown in figure

213530-q

  • A

    Proton trajectory is more curved

  • B

    $\alpha$-particle trajectory is more curved

  • C

    Both trajectories are equally curved but in opposite direction

  • D

    Both trajectories are equally curved and in same direction

Similar Questions

An electron is rotating around an infinite positive linear charge in a circle of radius $0.1 \,m$, if the linear charge density is $1 \,\mu C / m$, then the velocity of electron in $m / s$ will be ...... $\times 10^7$

A simple pendulum is suspended in a lift which is going up with an acceleration $5\ m/s^2$. An electric  field of magnitude $5 \ N/C$ and directed vertically upward is also present in the lift. The charge of the bob is $1\ mC$ and mass is $1\ mg$. Taking $g = \pi^2$ and length of the simple pendulum $1\ m$, the time period of the simple pendulum is ......$s$

A charged particle of mass $m$ and charge $q$ is released from rest in a uniform electric field $E.$ Neglecting the effect of gravity, the kinetic energy of the charged particle after ‘$t$’ second is

An electron falls through a distance of $1.5\; cm$ in a uniform electric field of magnitude $2.0 \times 10^{4} \;N C ^{-1} \text {[Figure (a)]} .$ The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance [Figure $(b)] .$ Compute the time of fall in each case. Contrast the situation with that of 'free fall under gravity'.

A proton sits at coordinates $(x, y) = (0, 0)$, and an electron at $(d, h)$, where $d >> h$. At time $t = 0$, $a$ uniform electric field $E$ of unknown magnitude but pointing in the positive $y$ direction is turned on. Assuming that $d$ is large enough that the proton-electron interaction is negligible, the $y$ coordinates of the two particles will be equal (at equal time)