4.Moving Charges and Magnetism
medium

A proton is projected with velocity $\overrightarrow{ V }=2 \hat{ i }$ in a region where magnetic field $\overrightarrow{ B }=(\hat{i}+3 \hat{j}+4 \hat{k})\; \mu T$ and electric field $\overrightarrow{ E }=10 \hat{ i } \;\mu V / m .$ Then find out the net acceleration of proton (in $m / s ^{2}$)

A

$1400$

B

$700$

C

$1000$

D

$800$

(AIIMS-2019)

Solution

The expression of force is given by,

$\overrightarrow{ F }= Q \overrightarrow{ E }+ Q (\overrightarrow{ V } \times \overrightarrow{ B })$

$=\left(1.6 \times 10^{-19}\right)\left(10 \hat{ i } \times 10^{-6}\right)+\left(1.6 \times 10^{-19}\right)[(2 \hat{ i }) \times(\hat{ i }+3 \hat{ j }+4 \hat{ k })] \times 10^{-9}$

$=\left(1.6 \times 10^{-19}\right)[10 \hat{ i }-8 \hat{ j }+6 \hat{ k }] \times 10^{-6} N$

Calculate the acceleration as follows,

$\overrightarrow{ a }=\frac{\left(1.6 \times 10^{-19}\right)[10 \hat{ i }-8 \hat{ j }+6 \hat{ k }] \times 10^{-6} N }{1.6 \times 10^{-27}}$

$=1400 m / s ^{2}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.