A proton of mass $1.67\times10^{-27}\, kg$ and charge $1.6\times10^{-19}\, C$ is projected with a speed of $2\times10^6\, m/s$ at an angle of $60^o$ to the $X-$ axis. If a uniform magnetic field of $0.104\, tesla$ is applied along the $Y-$ axis, the path of the proton is

  • A

    A circle of radius $ \cong $ $0.1\, m$ and time period $2\pi \times10^{-7}\, s$.

  • B

    A circle of radius $ \cong $ $0.2\, m$ and time period $7\pi \times10^{-7}\, s$.

  • C

    A helix of radius $ \cong $ $0.1\, m$ and time period $2\pi \times10^{-7}\, s$.

  • D

    A helix of radius $ \cong $ $0.2\, m$ and time period $4\pi \times10^{-7}\, s$.

Similar Questions

Mixed $H{e^ + }$ and ${O^{2 + }}$ ions (mass of $H{e^ + } = 4\,\,amu$ and that of ${O^{2 + }} = 16\,\,amu)$ beam passes a region of constant perpendicular magnetic field. If kinetic energy of all the ions is same then

A particle of charge $ - 16 \times {10^{ - 18}}$ $coulomb$ moving with velocity $10\,\,m{s^{ - 1}}$ along the $x$-axis enters a region where a magnetic field of induction $B$ is along the $y$-axis, and an electric field of magnitude ${10^4}\,\,V/m$ is along the negative $z$-axis. If the charged particle continues moving along the $x$-axis, the magnitude of $B$ is

  • [AIEEE 2003]

A proton, an electron, and a Helium nucleus, have the same energy. They are in circular orbitals in a plane due to magnetic field perpendicular to the plane. Let $r_p, r_e$ and $r_{He}$ be their respective radii, then

  • [JEE MAIN 2019]

Two particles $\mathrm{X}$ and $\mathrm{Y}$ having equal charges are being accelerated through the same potential difference. Thereafter they enter normally in a region of uniform magnetic field and describes circular paths of radii $R_1$ and $R_2$ respectively. The mass ratio of $\mathrm{X}$ and $\mathrm{Y}$ is :

  • [JEE MAIN 2024]

An electron enters a chamber in which an uniform magnetic field is present as shown in figure. Ignore gravity. During its motion inside the chamber 

  • [KVPY 2013]