An electron (mass = $9.1 \times {10^{ - 31}}$ $kg$; charge = $1.6 \times {10^{ - 19}}$ $C$) experiences no deflection if subjected to an electric field of $3.2 \times {10^5}$ $V/m$, and a magnetic fields of $2.0 \times {10^{ - 3}} \,Wb/m^2$. Both the fields are normal to the path of electron and to each other. If the electric field is removed, then the electron will revolve in an orbit of radius.......$m$
$45$
$4.5$
$0.45$
$0.045$
A positive, singly ionized atom of mass number $A_M$ is accelerated from rest by the voltage $192 V$. Thereafter, it enters a rectangular region of width $w$ with magnetic field $B_0=0.1 \hat{k}$ Tesla, as shown in the figure. The ion finally hits a detector at the distance $x$ below its starting trajectory.
[Given: Mass of neutron/proton $=(5 / 3) \times 10^{-27} kg$, charge of the electron $=1.6 \times 10^{-19} C$.]
Which of the following option($s$) is(are) correct?
$(A)$ The value of $x$ for $H^{+}$ion is $4 cm$.
$(B)$ The value of $x$ for an ion with $A_M=144$ is $48 cm$.
$(C)$ For detecting ions with $1 \leq A_M \leq 196$, the minimum height $\left(x_1-x_0\right)$ of the detector is $55 cm$.
$(D)$ The minimum width $w$ of the region of the magnetic field for detecting ions with $A_M=196$ is $56 cm$.
Motion of a moving electron is not affected by
An electron is moving along $+x$ direction with a velocity of $6 \times 10^{6}\, ms ^{-1}$. It enters a region of uniform electric field of $300 \,V / cm$ pointing along $+ y$ direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the $x$ direction will be
A strong magnetic field is applied on a stationary electron, then
An electron enters a region where electrostatic field is $20\,N/C$ and magnetic field is $5\,T$. If electron passes undeflected through the region, then velocity of electron will be.....$m{s^{ - 1}}$