A radioactive substance emits
Electromagnetic radiation
Electrons revolving around the nucleus
Charged particles
Both $(a)$ and $(c)$
For a substance the average life for $\alpha $ -emission is $1620\ years$ and for $\beta $ emission is $405\ years$ . After how much time the $\frac {1}{4}$ of the material remains by simultaneous emission ............ $years$
Given below are two statements :
Statement $I:$ The law of radioactive decay states that the number of nuclei undergoing the decay per unit time is inversely proportional to the total number of nuclei in the sample.
Statement $II:$ The half life of a radionuclide is the sum of the life time of all nuclei, divided by the initial concentration of the nuclei at time $t =0$.
In the light of the above statements, choose the most appropriate answer from the options given below :
A radioactive reaction is $_{92}{U^{238}}{ \to _{82}}P{b^{206}}$. How many $\alpha $ and $\beta $ particles are emitted
The $S.I.$ unit of radioactivity is
At time $t=0$, a container has $N_{0}$ radioactive atoms with a decay constant $\lambda$. In addition, $c$ numbers of atoms of the same type are being added to the container per unit time. How many atoms of this type are there at $t=T$ ?