7.Alternating Current
medium

एक $200\, \Omega$ प्रतिरोधक एवं एक $15.0\, \mu F$ संधारित्र, किसी $220\, V$, $50 \,Hz$ $ac$ स्त्रोत से श्रेणीक्रम में जुड़े हैं। $(a)$ परिपथ में धारा की गणना कीजिए; $(b)$ प्रतिरोधक एवं संधारित् के सिरों के बीच $(rms)$ वोल्टता की गणना कीजिए। क्या इन वोल्टताओं का बीजगणितीय योग स्त्रोत वोल्टता से अधिक है? यदि हाँ, तो इस विरोधाभास का निराकरण कीजिए।

Option A
Option B
Option C
Option D

Solution

$R=200\, \Omega, C=15.0 \,\mu \,F =15.0 \times 10^{-6} \,F$

$V=220 \,V , v=50 \,Hz$

$(a)$ In order to calculate the current, we need the impedance of the circuit. It is

$Z=\sqrt{R^{2}+X_{C}^{2}}=\sqrt{R^{2}+(2 \pi v C)^{-2}}$

$=\sqrt{(200\, \Omega)^{2}+\left(2 \times 3.14 \times 50 \times 15.0 \times 10^{-6} F \right)^{-2}}$

$=\sqrt{(200\, \Omega)^{2}+(212.3\, \Omega)^{2}}$

$=291.67\, \Omega$

Therefore, the current in the circuit is

$I=\frac{V}{Z}=\frac{220 \,V }{291.5\, \Omega}=0.755 \,A$

$(b)$ since the current is the same throughout the circuit, we have

$V_{R}=I R=(0.755\, A )(200 \,\Omega)=151\, V$

$V_{C}=I X_{C}=(0.755\, A )(212.3\, \Omega)=160.3\, V$

The algebraic sum of the two voltages, $V_{R}$ and $V_{C}$ is $311.3\, V$ which is more than the source voltage of $220 \,V$. How to resolve this paradox? As you have learnt in the text, the two voltages are not in the same phase. Therefore, they cannot be added like ordinary numbers. The two voltages are out of phase by ninety degrees. Therefore, the total of these voltages must be obtained using the Pythagorean theorem:

$V_{R+C}=\sqrt{V_{R}^{2}+V_{C}^{2}}$

$=220\, V$

Thus, if the phase difference between two voltages is properly taken into account, the total voltage across the resistor and the capacitor is equal to the voltage of the source.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.