A ring, a solid sphere and a thin disc of different masses rotate with the same kinetic energy. Equal torques are applied to stop them. Which will make the least number of rotations before coming to rest
Disc
Ring
Solid sphere
All will make same number of rotations
An air compressor is powered by a $200\,rad\,s^{-1}$ electric motor using a $V-$ belt drive. The motor pulley is $8\,cm$ in radius, and the tension in the $V-$ belt is $135\,N$ on one side and $45\,N$ on the other. The power of the motor will be ...... $kW$.
A disc and a ring of same mass are rolling and if their kinetic energies are equal, then the ratio of their velocities will be
A disc is rotating with angular velocity $\vec{\omega}$. A force $\vec{F}$ acts at a point whose position vector with respect to the axis of rotation is $\vec{r}$. The power associated with torque due to the force is given by ..........
A solid cylinder of mass $20 \;kg$ rotates about its axis with angular speed $100\; rad s ^{-1}$ The radius of the cylinder is $0.25 \;m$. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?
A small object of uniform density rolls up a curved surface with an initial velocity $v$. It reaches up to a maximum height of $\frac{3 \mathrm{v}^2}{4 \mathrm{~g}}$ with respect to the initial position. The object is