Gujarati
Hindi
7.Gravitation
normal

A rocket of mass $M$ is launched vertically from the surface of the earth with an initial speed $V.$ Assuming the radius of the earth to be $R$ and negligible air resistance, the maximum height attained by the rocket above the surface of the earth is

A

$\frac{R}{{\left( {\frac{{gR}}{{2{V^2}}} - 1} \right)}}$

B

${R\left( {\frac{{gR}}{{2{V^2}}} - 1} \right)}$

C

$\frac{R}{{\left( {\frac{{2gR}}{{{V^2}}} - 1} \right)}}$

D

${R\left( {\frac{{2gR}}{{{V^2}}} - 1} \right)}$

Solution

$\Delta \mathrm{K} \cdot \mathrm{E}=\Delta \mathrm{U}$

$\Rightarrow \frac{1}{2} \mathrm{MV}^{2}=\mathrm{GM}_{\mathrm{e}} \mathrm{M}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}+\mathrm{h}}\right)$        $…(i)$

Also $\mathrm{g}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}^{2}}$            $…(ii)$

On solving ( $i$ ) and $(ii)$ $\mathrm{h}=\frac{\mathrm{R}}{\left(\frac{2 \mathrm{g} \mathrm{R}}{\mathrm{V}^{2}}-1\right)}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.