A satellite can be in a geostationary orbit around a planet at a distance $r$ from the centre of the planet. If the angular velocity of the planet about its axis doubles, a satellite can now be in a geostationary orbit around the planet if its distance from the centre of the planet is

  • A

    $\frac{r}{2}$

  • B

    $\frac{r}{{2\sqrt 2 }}$

  • C

    $\frac{r}{{{{\left( 4 \right)}^{1/3}}}}$

  • D

    $\frac{r}{{{{\left( 2 \right)}^{1/3}}}}$

Similar Questions

A particle of mass $M$ is situated at the centre of a spherical shell of same mass and radius $a$. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be

Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre of the planet for $r\geq $ radius of the planet. Plots $1$ and $2$ coincide for $r\geq R_2$ and plots $3$ and $4$ coincide for $r \geq  R_4$. The sequence of the planets in the descending order of their densities is 

If the change in the value of ' $g$ ' at a height ' $h$ ' above the surface of the earth is same as at a depth $x$ below it, then ( $x$ and $h$ being much smaller than the radius of the earth)

Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$ . the space around the masses is now filled with a liquid of specific gravity $3$ . The gravitational force between bodies will now be

Gravitation is the phenomenon of interaction between ............