Gujarati
Hindi
7.Gravitation
normal

Suppose the gravitational force varies inversely as the $n^{th}$ power of the distance. Then, the time period of a planet in circular orbit of radius $R$ around the sun will be proportional to

A

$R^n$

B

${R^{\left( {n + 1} \right)/2}}$

C

${R^{\left( {n - 1} \right)/2}}$

D

$R^{-n}$

Solution

$\mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{v}}$

and $\quad \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{k}}{\mathrm{r}^{\mathrm{n}}} \Rightarrow \mathrm{v}=\frac{\mathrm{A}}{\mathrm{r}^{\frac{\mathrm{n}-1}{2}}}$

$\therefore \mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{A}} \mathrm{r}^{\frac{\mathrm{n}-1}{2}}=\frac{2 \pi}{\mathrm{A}} \mathrm{r}^{\frac{\mathrm{n}+1}{2}} \Rightarrow \mathrm{T} \propto \mathrm{r}^{\frac{\mathrm{n}+1}{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.