7.Gravitation
hard

A satellite is in an elliptic orbit around the earth with aphelion of $6R$ and perihelion of $2R$ where $R = 6400 \,km$ is the radius of the earth. Find eccentricity of the orbit. Find the velocity of the satellite at apogee and perigee. What should be done if this satellite has to be transferred to a circular orbit of radius $6R$ ? $($ $G = 6.67 \times 10^{-11}\,SI$ $\rm {unit}$ and $M = 6 \times 10^{24}\,kg$$)$

Option A
Option B
Option C
Option D

Solution

Given, $r_{p}=$ radius of perihelion $=2 \mathrm{R}$

$r_{a}=$ radius of aphelion $=6 \mathrm{R}$

Hence, we can write,

$r_{a}=a(1+e)=6 \mathrm{R}$

$r_{p}=a(1-e)=2 \mathrm{R}$

Solving equ. $(i)$ and $(ii)$, we get

eccentricity, $e=\frac{1}{2}$

Angular momentum remains unchanged.

$\therefore m v_{p} r_{p}=m v_{a} r_{a}$

$\therefore \frac{v_{a}}{v_{p}}=\frac{r_{p}}{r_{a}}=\frac{2 \mathrm{R}}{6 \mathrm{R}}=\frac{1}{3}$

Energy is same at perigee and apogee,

$\frac{1}{2} m v_{p}^{2}-\frac{\mathrm{GM} m}{r_{p}}=\frac{1}{2} m v_{a}^{2}-\frac{\mathrm{GM} m}{r_{a}}$

$\therefore v_{p}^{2}\left(1-\frac{1}{9}\right)=-2 \mathrm{GM}\left(\frac{1}{r_{a}}-\frac{1}{r_{p}}\right)=2 \mathrm{GM}\left(\frac{1}{r_{p}}-\frac{1}{r_{a}}\right)\left(\right.$ By putting $\left.v_{a}=\frac{v_{p}}{3}\right)$

${p}=\frac{\left[2 \mathrm{GM}\left(\frac{1}{r_{p}}-\frac{1}{r_{a}}\right)\right]^{\frac{1}{2}}}{\left[1-\left(\frac{v_{a}}{v_{p}}\right)^{2}\right]^{\frac{1}{2}}}=\left[\frac{\frac{2 \mathrm{GM}}{\mathrm{R}}\left(\frac{1}{2}-\frac{1}{6}\right)}{\left(1-\frac{1}{9}\right)}\right]^{\frac{1}{2}}$ $=\left(\frac{\frac{2}{3} \mathrm{GM}}{\frac{8}{9} \mathrm{R}}\right)^{\frac{1}{2}}=\sqrt{\frac{3}{4} \frac{\mathrm{GM}}{\mathrm{R}}}=6.85 \mathrm{~km} / \mathrm{s}$ 

$v_{p}=6.85 \mathrm{~km} / \mathrm{s}, v_{a}=2.28 \mathrm{~km} / \mathrm{s}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.