Gujarati
Hindi
7.Gravitation
normal

A satellite is orbitting around the earth with areal speed $v_a$. At what height from the  surface of the earth, it is rotating, if the radius of earth is $R$

A

$\frac{{4v_a^2}}{{g{R^2}}} - R$

B

$\frac{{2v_a^2}}{{g{R^2}}} - R$

C

$\frac{{v_a^2}}{{g{R^2}}} - R$

D

$\frac{{v_a^2}}{{2g{R^2}}} - R$

Solution

$v_{a}=\frac{d A}{d t}=\frac{1}{2} r v \Rightarrow v_{a}^{2}=\frac{1}{4} r^{2} v^{2}$

$\Rightarrow v_{a}^{2}=\frac{1}{4} r^{2} \times \frac{g R^{2}}{r}$

$\mathrm{r}=\frac{4 \mathrm{v}_{\mathrm{a}}^{2}}{\mathrm{g} \mathrm{R}^{2}} \quad \therefore \mathrm{h}=\frac{4 \mathrm{v}_{\mathrm{a}}^{2}}{\mathrm{g} \mathrm{R}^{2}}-\mathrm{R}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.