Gujarati
Hindi
7.Gravitation
normal

A satellite of mass $m$ is at a distance $a$ from $a$ star of mass $M$. The speed of satellite is $u$. Suppose the law of universal gravity is $F =  - G\frac{{Mm}}{{{r^{2.1}}}}$  instead of $F =  - G\frac{{Mm}}{{{r^2}}}$, find the speed of the statellite when it is at $a$ distance $b$ from the star.

A

$\sqrt {{u^2} + 2GM\left( {\frac{1}{{{b^{1.1}}}} - \frac{1}{{{a^{1.1}}}}} \right)} $

B

$\sqrt {{u^2} + GM\left( {\frac{1}{{{a^{1.1}}}} - \frac{1}{{{b^{1.1}}}}} \right)}$

C

$\sqrt {{u^2} + \frac{2}{{1.1}}GM\left( {\frac{1}{{{b^{1.1}}}} - \frac{1}{{{a^{1.1}}}}} \right)}$

D

$\sqrt {{u^2} + \frac{2}{{2.1}}GM\left( {\frac{1}{{{b^{1.1}}}} - \frac{1}{{{a^{1.1}}}}} \right)}$

Solution

$E_{i}=E_{f}$

$\frac{1}{2} m u^{2}-U_{i}=\frac{1}{2} m v^{2}-U_{f}$

$U=-\int_{\infty}^{r} \frac{G M m}{r^{2.1}} d r$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.