- Home
- Standard 11
- Physics
7.Gravitation
hard
A satellite of earth of mass $'m'$ taken from orbital radius $2R$ to $3R,$ then minimum work done
A
$\frac{{GMm}}{{6R}}$
B
$\frac{{GMm}}{{12R}}$
C
$\frac{{GMm}}{{24R}}$
D
$\frac{{GMm}}{{3R}}$
Solution
Centripetal acceleration of the satellite is provided by the gravitational force exerted by earth.
$\Longrightarrow \frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$
$\Longrightarrow v^{2}=\frac{G M}{r}$
Total energy of the system $=\mathrm{K.E.}+\mathrm{G.P.E.}=\frac{1}{2} m v^{2}-\frac{G M m}{r}$
$=-\frac{G M m}{2 r}$
Therefore energy required to jump from orbital radius of $2 \mathrm{R}$ to orbital radius of $3 \mathrm{R}$ is given
$E=\frac{G M m}{2}\left(\frac{1}{2 R}-\frac{1}{3 R}\right)$
$E=\frac{G M m}{12 R}$
Standard 11
Physics
Similar Questions
medium