Gujarati
Hindi
7.Gravitation
hard

A satellite of mass $m$ is in a circular orbit of radius $2R_E$ around the earth. The energy required to transfer it to a circular orbit of radius $4R_E$ is (where $M_E$ and $R_E$ is the mass and radius of the earth respectively)

A

$\frac{{G{M_E}m}}{{2{R_E}}}$

B

$\frac{{G{M_E}m}}{{4{R_E}}}$

C

$\frac{{G{M_E}m}}{{8{R_E}}}$

D

$\frac{{G{M_E}m}}{{16{R_E}}}$

Solution

$(\mathrm{TE})_{\mathrm{i}}=-\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{2\left(2 \mathrm{R}_{\mathrm{E}}\right)}=-\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{4 \mathrm{R}_{\mathrm{E}}}$

$(\mathrm{TE})_{\mathrm{f}}=-\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{2\left(4 \mathrm{R}_{\mathrm{E}}\right)}=-\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{8 \mathrm{R}_{\mathrm{E}}}$

Energy required

$=(\mathrm{TE})_{\mathrm{f}}-(\mathrm{TE})_{\mathrm{i}}=-\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{8 \mathrm{R}_{\mathrm{E}}}+\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{4 \mathrm{R}_{\mathrm{E}}}$

$=\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{8 \mathrm{R}_{\mathrm{E}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.