- Home
- Standard 11
- Physics
7.Gravitation
easy
A satellite of mass $m$ is placed at a distance $r$ from the centre of earth (mass $M$). The mechanical energy of the satellite is
A
$ - \frac{{GMm}}{r}$
B
$\frac{{GMm}}{r}$
C
$\frac{{GMm}}{{2r}}$
D
$ - \frac{{GMm}}{{2r}}$
Solution
(d) Mechanical energy $=K.E+U$ (kinetic energy $+$ potential energy)
$U=-\frac{G m M}{r}$
$K \cdot E=\frac{1}{2} m v^{2}$
$K . E=\frac{1}{2} \frac{G m M}{r}$
$M . E=K . E+U$
$=-\frac{G m M}{r}+\frac{1}{2} \frac{G m M}{r}$
$M . E=-\frac{G m M}{2 r}$
Standard 11
Physics
Similar Questions
Match the column $-I$ with column $-II$ For a satellite in circular orbit,
Column $-I$ | Column $-II$ |
$(A)$ Kinetic energy | $(p)$ $ – \frac{{G{M_E}m}}{{2r}}$ |
$(B)$ Potential energy | $(q)$ $\sqrt {\frac{{G{M_E}}}{r}} $ |
$(C)$ Total energy | $(r)$ $ – \frac{{G{M_E}m}}{{r}}$ |
$(D)$ Orbital energy | $(s)$ $ \frac{{G{M_E}m}}{{2r}}$ |
(where $M_E$ is the mass of the earth, $m$ is mass of the satellite and $r$ is the radius of the orbit)
hard