Gujarati
Hindi
7.Gravitation
hard

A satellite of mass $m,$ initially at rest on the earth, is launched into a circular orbit at a height equal to the radius of the earth. The minimum energy required is

A

$\frac{{\sqrt 3 }}{4}mgR$

B

$\frac{1}{2}mgR$

C

$\frac{1}{4}mgR$

D

$\frac{3}{4}mgR$

Solution

We know

$V_{0}=\sqrt{\frac{G M}{r}} \& g=\frac{G M}{R^{2}}$

From energy conservation

$U_{i}+K_{i}=U_{f}+K_{f}$

$-\frac{G M m}{R}+K_{f}=-\frac{G M m}{2 R}+\frac{1}{2} m v_{0}^{1}$

$K_{i}=\frac{G M m}{2 R}+\frac{1}{2} m(\sqrt{\frac{G M}{2 R}})^{2} \Rightarrow K_{i}=\frac{3 G M m}{4 R} \rightarrow K_{i}=\frac{3}{4} m g R$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.