On a hypothetical planet satellite can only revolve in quantized energy level i.e. magnitude of energy of a satellite is integer multiple of a fixed energy. If two successive orbit have radius $R$ and $\frac{3R}{2}$ what could be maximum radius of satellite
$9R$
$6R$
$4R$
$3R$
A particle of mass $M$ is situated at the centre of a spherical shell of same mass and radius $a$. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be
Which of the following graph represents the variations of acceleration due to gravity $(g)$ with distance $r$ from the centre of earth?
A rocket is projected in the vertically upwards direction with a velocity kve where $v_e$ is escape velocity and $k < 1$. The distance from the centre of earth upto which the rocket will reach, will be
Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$. The space around the masses is now filled with a liquid of specific gravity $3$. The gravitationalforce will now be
The condition for a uniform spherical mass m of radius r to be a black hole is [ $G$ = gravitational constant and $g$ = acceleration due to gravity]