- Home
- Standard 12
- Physics
A series combination of $n_1$ capacitors, each of value $C_1$, is charged by a source of potential difference $4V$. When another parallel combination of $n_2$ capacitors, each of value $C_2$, is charged by a source of potential difference $V$ , it has the same (total) energy stored in it, as the first combination has. The value of $C_2$ , in terms of $C_1$, is then
$\frac {2C_1}{n_1n_2}$
$16\frac{{{n_2}}}{{{n_1}}}{C_1}$
$2\frac{{{n_2}}}{{{n_1}}}{C_1}$
$\frac {16C_1}{n_1n_2}$
Solution

A series combination of $\mathrm{n}_{1}$ capacitors each of capacitance $\mathrm{C}_{1}$ are connected to $4 \mathrm{V}$ source as shown in the figure.
Total capacitance of the series combination of the capacitors is
$\frac{1}{{{C_{\rm{s}}}}} = \frac{1}{{{C_1}}} + \frac{1}{{{C_1}}} + \frac{1}{{{C_1}}} + \ldots \ldots \,\,upto\,{n_1}\,\,terms\,\, = \frac{{{n_1}}}{{{C_1}}}$
or ${C_s} = \frac{{{C_1}}}{{{n_1}}}$ ……..$(i)$
Total energy stored in a series combination of the capacitors is
${U_s} = \frac{1}{2}{C_s}{(4V)^2} = \frac{1}{2}\left( {\frac{{{C_1}}}{{{n_1}}}} \right){(4V)^2}\quad $ (Using $(i)$) …….$(ii)$
A parallel combination of $n_{2}$ capacitors each of capacitance $\mathrm{C}_{2}$ are connected to $\mathrm{V}$ source as shown in the figure.
Total capacitance of the parallel combination of capacitors is
$C_{p}=C_{2}+C_{2}+\ldots \ldots \ldots+\text { upto } n_{2} \text { terms }=n_{2} C_{2} $
or $C_{p}=n_{2} C_{2}$ ………..$(iii)$
Total energy stored in a parallel combination of capacitors is
$U_{p} =\frac{1}{2} C_{p} V^{2} $
$ = \frac{1}{2}\left( {{n_2}{C_2}} \right){(V)^2}\quad $ (Using $(iii)$) …….$(iv)$
According to the given problem,
$U_{s}=U_{p}$
Substituting the values of $U_{\mathrm{s}}$ and $U_{\mathrm{p}}$ from equations $(ii)$ and $(iv),$ we get
$\frac{1}{2} \frac{C_{1}}{n_{1}}(4 V)^{2}=\frac{1}{2}\left(n_{2} C_{2}\right)(V)^{2}$
or $\quad \frac{C_{1} 16}{n_{1}}=n_{2} C_{2}$ or $C_{2}=\frac{16 C_{1}}{n_{1} n_{2}}$