A shell of mass $m$ moving with velocity $v$ suddenly breakes into two pieces. The part having mass $\frac{m}{5}$ remains stationary. The velocity of the other part will be
$v$
$\frac{5v}{4}$
$\frac{4v}{5}$
$\frac{v}{5}$
The potential energy of a diatomic molecule is given by $U = \frac{A}{{{r^{12}}}} - \frac{B}{{{r^6}}}$ . $A$ and $B$ are positive constants. The distance $r$ between them at equilibrium is
$F = 2x^2 - 3x - 2$. Choose correct option
Four particles $A, B, C$ and $D$ of equal mass are placed at four corners of a square. They move with equal uniform speed $v$ towards the intersection of the diagonals. After collision, $A$ comes to rest, $B$ traces its path back with same speed and $C$ and $D$ move with equal speeds. What is the velocity of $C$ after collision
A ball $P$ collides with another identical ball $Q$ at rest. For what value of coefficient of restitution $e$, the velocity of ball $Q$ become two times that of ball $P$ after collision
Three particles of masses $10g, 20g$ and $40g$ are moving with velocities $10\widehat i,10\widehat j$ and $10\widehat k$ $m/s$ respectively. If due to some mutual interaction, the first particle comes to rest and the velocity of second particle becomes $\left( {3\widehat i + 4\widehat j\,\,} \right)\, m/s$, then the velocity of third particle is