A $300\ kg$ crate is dropped vertically onto a conveyor belt that is moving at $1.20\ m/s$ . A motor maintains the belt's constant speed. The belt initially slides under the crate, with a coefficient of friction of $0.400$ . After a short time, the crate is moving at the speed of the belt. During the period in which the crate is being accelerated, find the work done by the motor which drives the belt ................... $\mathrm{J}$

821-279

  • A

    $432$

  • B

    $216$

  • C

    $108$

  • D

    $54$

Similar Questions

A frictionless track $ABCDE$ ends in a circular loop of radius $R$ .A body slides down the track from point $A$ which is at a height $h = 5\, cm$. Maximum value of $R$ for the body to successfully complete the loop is .................. $\mathrm{cm}$

A particle is moved from $(0, 0)$ to $(a, a)$ under a force $\vec F = (3\hat i + 4\hat j)$ from two paths. Path $1$ is $OP$ and path $2$ is $OQP$. Let $W_1$ and $W_2$ be the work done by this force in these two paths respectively. Then

In the non-relativistic regime, if the momentum, is increased by $100\%$, the percentage increase in kinetic energy is

In an elastic collision of two particles the following quantity is conserved

A vertical spring with force constant $K$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d$. The net work done in the process is