13.Oscillations
medium

A simple pendulum of length $1\, m$ is oscillating with an angular frequency $10\, rad/s$. The support of the pendulum starts oscillating up and down with a small angular frequency of $1\, rad/s$ and an amplitude of $10^{-2}\, m$. The relative change in the angular frequency of the pendulum is best given by

A

$10^{-3} rad/s$

B

$1\,rad/s$

C

$10^{-1} rad/s$

D

$10^{-5} rad/s$

(JEE MAIN-2019)

Solution

Angular frequency of pendulum

$\omega \propto \sqrt{\frac{g_{e f f}}{\ell}}$

$\therefore \quad \frac{\Delta \omega}{\omega}=\frac{1}{2} \frac{\Delta g_{e f f}}{g_{e f f}}$

$\Delta \omega=\frac{1}{2} \frac{\Delta g}{g} \times \omega$

$[ \omega_{s}=$ angular frequency of support] 

$\frac{\Delta \omega}{\omega}=\frac{1}{2} \times \frac{\Delta g}{g}$

$=\frac{1}{2} \times \frac{2\left(\mathrm{A} \omega_{5}^{5}\right)}{10}$

$\Rightarrow \frac{\Delta \omega}{\omega}=\frac{1 \times 10^{-2}}{10}=10^{-3}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.