- Home
- Standard 11
- Physics
13.Oscillations
hard
A simple pendulum of length $l$ and mass $m$ of the bob is suspended in a car that is travelling with a constant speed $v$ around a circular path of radius $R$. If the pendulum undergoes oscillations with small amplitude about its equilibrium position, the frequency of its oscillations will be
A
$\frac{1}{{2\pi }}\,\sqrt {\frac{g}{l}} $
B
$2\pi \,\sqrt {\frac{l}{g}} $
C
$\frac{1}{{2\pi }}\,\sqrt {\frac{{\left( {{g^2} + \frac{{{v^4}}}{{{R^2}}}} \right)}}{l}} $
D
$\frac{1}{{2\pi }}\,\sqrt {\frac{{{{\left( {{g^2} + \frac{{{v^4}}}{{{R^2}}}} \right)}^{\frac{1}{2}}}}}{l}} $
Solution

$\because g_{e f f}=\sqrt{g^{2}+\left(\frac{v^{2}}{R}\right)^{2}}$
$T=2 \pi \sqrt{\frac{\ell}{\sqrt{g^{2}+\frac{v^{4}}{R^{2}}}}}$
Standard 11
Physics
Similar Questions
medium
hard