- Home
- Standard 11
- Physics
3-2.Motion in Plane
normal
A small body of mass $m$ slides down from the top of a hemisphere of radius $r$. The surface of block and hemisphere are frictionless. The height at which the body lose contact with the surface of the sphere is

A
$\frac{3}{2}r$
B
$\frac{2}{3}r$
C
$\frac{1}{2}g{t^2}$
D
$\frac{{{v^2}}}{{2g}}$
Solution
$m g \cos \theta=\frac{m v^{2}}{R}$
$m g(R-R \cos \theta)=\frac{1}{2} m v^{2}$
$\operatorname{mgcos} \theta=\frac{2 m g R(1-\cos \theta)}{R}$
$\cos \theta=2-2 \cos \theta \Rightarrow \quad \cos \theta=\frac{2}{3}$
$h=r \cos \theta=\frac{2}{3} r$
Standard 11
Physics
Similar Questions
normal