- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
hard
A small object of uniform density rolls up a curved surface with an initial velocity $v$. It reaches up to a maximum height of $\frac{3 \mathrm{v}^2}{4 \mathrm{~g}}$ with respect to the initial position. The object is

A
ring
B
solid sphere
C
hollow sphere
D
disc
(IIT-2007)
Solution
$v =\sqrt{\frac{2 g h}{1+\frac{ k ^2}{ r ^2}}}$
$v ^2=\frac{2 g 3 v ^2}{4 g \left(1+\frac{ k ^2}{ r ^2}\right)}$
$\Rightarrow 1+\frac{ k ^2}{ r ^2}=\frac{3}{2}$
$k ^2=\frac{1}{2} r ^2 \rightarrow \text { disc }$
Standard 11
Physics
Similar Questions
normal