A circular disc of mass $2 \,kg$ and radius $10 \,cm$ rolls without slipping with a speed $2 \,m / s$. The total kinetic energy of disc is .......... $J$
$10$
$6$
$2$
$4$
A disc of radius $1\,m$ and mass $4\,kg$ rolls on a horizontal plane without slipping in such a way that its centre of mass moves with a speed of $10\,cm/\sec .$ Its rotational kinetic energy is
A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of moving sphere is $\pi: 22$ then, the value of its angular speed will be $...........\,rad / s$.
Two discs of moment of inertia $I_1$ and $I_2$ and angular speeds ${\omega _1}\,{\rm{and }}{\omega _2}$ are rotating along collinear axes passing through their centre of mass and perpendicular to their plane. If the two are made to rotate together along the same axis the rotational $KE$ of system will be
If a solid sphere of mass $1\, kg$ and radius $0.1\, m$ rolls without slipping at a uniform velocity of $1\, m/s$ along a straight line on a horizontal floor, the kinetic energy is
A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $(K_t)$ as well as rotational kinetic energy $(K_r)$ simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is