A ball of mass $100 \,g$ is dropped from a height $h =$ $10\, cm$ on a platform fixed at the top of vertical spring (as shown in figure). The ball stays on the platform and the platform is depressed by a distance $\frac{ h }{2}$. The spring constant is.......... $Nm^{-1}$ . (Use $g=10\, ms ^{-2}$ )
$122$
$129$
$127$
$120$
A block is fastened to a horizontal spring. The block is pulled to a distance $x =10\,cm$ from its equilibrium position (at $x =0$ ) on a frictionless surface from rest. The energy of the block at $x =5$ $cm$ is $0.25\,J$. The spring constant of the spring is $.........Nm ^{-1}$
A massless platform is kept on a light elastic spring as shown in fig. When a sand particle of mass $0.1\; kg$ is dropped on the pan from a height of $0.24 \;m$, the particle strikes the pan and spring is compressed by $0.01\; m$.
From what height should the particle be dropped to cause a compression of $0.04\; m$.
The figure shows a mass $m$ on a frictionless surface. It is connected to rigid wall by the mean of a massless spring of its constant $k$. Initially, the spring is at its natural position. If a force of constant magnitude starts acting on the block towards right, then the speed of the block when the deformation in spring is $x,$ will be
A block of mass $M$ is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has force constant value $k.$ The mass is released from rest with the spring initially unstretched. The maximum extension produced in the length of the spring will be
A block $(B)$ is attached to two unstretched springs $\mathrm{S} 1$ and $\mathrm{S} 2$ with spring constants $\mathrm{k}$ and $4 \mathrm{k}$, respectively (see figure $\mathrm{I}$ ). The other ends are attached to identical supports $M1$ and $M2$ not attached to the walls. The springs and supports have negligible mass. There is no friction anywhere. The block $\mathrm{B}$ is displaced towards wall $1$ by a small distance $\mathrm{x}$ (figure $II$) and released. The block returns and moves a maximum distance $\mathrm{y}$ towards wall $2$ . Displacements $\mathrm{x}$ and $\mathrm{y}$ are measured with respect to the equilibrium position of the block $B$. The ratio $\frac{y}{x}$ is Figure: $Image$