- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
medium
A solid sphere rolls without slipping, first horizontally and then up to a point $X$ at height $h$ on an inclined plane before rolling down, as shown in the figure below. The initial horizontal speed of the sphere is

A
$\sqrt{10 g h / 7}$
B
$\sqrt{7 g h / 5}$
C
$\sqrt{5 g h / 7}$
D
$\sqrt{2 g h}$
(KVPY-2013)
Solution
(a)
Let initial horizontal speed of sphere is $v$.
Then, total kinetic energy of sphere on horizontal part
$=( KE )_{\text {translation }}+( KE )_{\text {rotation }}$
$=\frac{1}{2} m v^2+\frac{1}{2} I \omega^2$
$=\frac{1}{2} m v^2+\frac{1}{2} \times \frac{2}{5} m R^2 \times \frac{v^2}{R^2}=\frac{7}{10} m v^2$
If sphere rises upto height $h$ then, by conservation of energy, we have
$m g h=\frac{7}{10} m v^2$
$\text { or } \quad v=\sqrt{\frac{10}{7} g h}$
Standard 11
Physics
Similar Questions
hard