Three identical square plates rotate about the axes shown in the figure in such a way that their kinetic energies are equal. Each of the rotation axes passes through the centre of the square. Then the ratio of angular speeds $\omega _1 : \omega _2 : \omega _3$ is
$1 : 1 : 1$
$\sqrt 2:\sqrt 2:1$
$1 : \sqrt 2 : 1$
$1 : 2 : \sqrt 2$
A solid cylinder of mass $M$ and radius $R$ rolls down an inclined plane without slipping. The speed of its centre of mass when it reaches the bottom is ...
Write the formula for power and angular momentum in rotational motion.
A ring of mass $m$ and radius $r$ rotates about an axis passing through its centre and perpendicular to its plane with angular velocity $\omega$. Its kinetic energy is
Ratio of total energy and rotational kinetic energy in the motion of a disc is
A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass $K$. If radius of the ball be $R$, then the fraction of total energy associated with its rotational energy will be