A solution of sodium borate has a $pH$ of approximately
$< 7$
$> 7$
$= 7$
Between $ 4$ to $5$
For a weak acid, the incorrect statement is
The degree of dissociation of $0.1\,M\,HCN$ solution is $0.01\%$ . Its ionisation constant would be
Derive the equation of relation between weak base ionization constant ${K_b}$ and its conjugate acid ionization constant ${K_a}$
$HClO$ is a weak acid. The concentration of ${H^ + }$ ions in $0.1\,M$ solution of $HClO\,({K_a} = 5 \times {10^{ - 8}})$ will be equal to
What is the $pH$ of $0.001 \,M$ aniline solution? The ionization constant of aniline can be taken from Table . Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.
Base | $K _{ b }$ |
Dimethylamine, $\left( CH _{3}\right)_{2} NH$ | $5.4 \times 10^{-4}$ |
Triethylamine, $\left( C _{2} H _{5}\right)_{3} N$ | $6.45 \times 10^{-5}$ |
Ammonia, $NH _{3}$ or $NH _{4} OH$ | $1.77 \times 10^{-5}$ |
Quinine, ( $A$ plant product) | $1.10 \times 10^{-6}$ |
Pyridine, $C _{5} H _{5} N$ | $1.77 \times 10^{-9}$ |
Aniline, $C _{6} H _{5} NH _{2}$ | $4.27 \times 10^{-10}$ |
Urea, $CO \left( NH _{2}\right)_{2}$ | $1.3 \times 10^{-14}$ |