The ionization constant of $HF$, $HCOOH$ and $HCN$ at $298\, K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and  $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that,

$K_{b}=\frac{K_{w}}{K_{a}}$

Given $K_{a}$ of $HF =6.8 \times 10^{-4}$

Hence, $K_{b}$ of its conjugate base $F^{-}$

$=\frac{K_{w}}{K_{a}}$

$=\frac{10^{-14}}{6.8 \times 10^{-4}}$

$=1.5 \times 10^{-11}$

Given,

$K_{a}$ of $HCOOH =1.8 \times 10^{-4}$

Hence, $K_{b}$ of its conjugate base $HCOO ^{-}$

$=\frac{K_{w}}{K_{a}}$

$=\frac{10^{-14}}{1.8 \times 10^{-4}}$

$=5.6 \times 10^{-11}$

Given,

$K_{a}$ of $HCN =4.8 \times 10^{-9}$

Hence, $K_{b}$ of its conjugate base $CN ^{-}$

$=\frac{K_{w}}{K_{a}}$

$=\frac{10^{-14}}{4.8 \times 10^{-9}}$

$=2.08 \times 10^{-6}$

Similar Questions

What is the dissociation constant for $NH_4OH$ if at a given temperature its $0.1\,N$ solution has $pH = 11.27$ and the ionic product of water is $7.1 \times 10^{-15}$ (antilog $0.73 = 5.37$ )

The $ pH$  of $ 0.1$ $M$ acetic acid is $3$, the dissociation constant of acid will be

The degree of dissociation $(\alpha )$ of $PCl_5$ obeying the equilibrium;  is $PC{l_5}\, \rightleftharpoons \,PC{l_3}\, + \,C{l_2}$ related to the pressure at equlibrium by

What is the $ pH$  of $0.01\, M$  glycine solution? For glycine, $K{a_1} = 4.5 \times {10^{ - 3}}$ and $K{a_2} = 1.7 \times {10^{ - 10}}$ at  $298 \,K$

  • [AIIMS 2004]

Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)