The ionization constant of $HF$, $HCOOH$ and $HCN$ at $298\, K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.
It is known that,
$K_{b}=\frac{K_{w}}{K_{a}}$
Given $K_{a}$ of $HF =6.8 \times 10^{-4}$
Hence, $K_{b}$ of its conjugate base $F^{-}$
$=\frac{K_{w}}{K_{a}}$
$=\frac{10^{-14}}{6.8 \times 10^{-4}}$
$=1.5 \times 10^{-11}$
Given,
$K_{a}$ of $HCOOH =1.8 \times 10^{-4}$
Hence, $K_{b}$ of its conjugate base $HCOO ^{-}$
$=\frac{K_{w}}{K_{a}}$
$=\frac{10^{-14}}{1.8 \times 10^{-4}}$
$=5.6 \times 10^{-11}$
Given,
$K_{a}$ of $HCN =4.8 \times 10^{-9}$
Hence, $K_{b}$ of its conjugate base $CN ^{-}$
$=\frac{K_{w}}{K_{a}}$
$=\frac{10^{-14}}{4.8 \times 10^{-9}}$
$=2.08 \times 10^{-6}$
What is the dissociation constant for $NH_4OH$ if at a given temperature its $0.1\,N$ solution has $pH = 11.27$ and the ionic product of water is $7.1 \times 10^{-15}$ (antilog $0.73 = 5.37$ )
The $ pH$ of $ 0.1$ $M$ acetic acid is $3$, the dissociation constant of acid will be
The degree of dissociation $(\alpha )$ of $PCl_5$ obeying the equilibrium; is $PC{l_5}\, \rightleftharpoons \,PC{l_3}\, + \,C{l_2}$ related to the pressure at equlibrium by
What is the $ pH$ of $0.01\, M$ glycine solution? For glycine, $K{a_1} = 4.5 \times {10^{ - 3}}$ and $K{a_2} = 1.7 \times {10^{ - 10}}$ at $298 \,K$
Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)