A space craft of mass $'M' $ and moving with velocity $ 'v' $ suddenly breaks in two pieces of same mass $m$. After the explosion one of the mass $ 'm'$  becomes stationary. What is the velocity of the other part of craft

  • A

    $\frac{{Mv}}{{M - m}}$

  • B

    $v$

  • C

    $\frac{{Mv}}{m+M}$

  • D

    $\frac{{M - m}}{m}v$

Similar Questions

Write the law of conservation of total linear momentum for the system of particle.

A block of mass $M$ has a circular cut with a frictionless surface as shown. The block rests on the horizontal frictionless surface of a fixed table. Initially the right edge of the block is at $x=0$, in a co-ordinate system fixed to the table. A point mass $m$ is released from rest at the topmost point of the path as shown and it slides down. When the mass loses contact with the block, its position is $\mathrm{x}$ and the velocity is $\mathrm{v}$. At that instant, which of the following options is/are correct?

(image)

$[A]$ The $x$ component of displacement of the center of mass of the block $M$ is : $-\frac{m R}{M+m}$.

[$B$] The position of the point mass is : $x=-\sqrt{2} \frac{\mathrm{mR}}{\mathrm{M}+\mathrm{m}}$.

[$C$] The velocity of the point mass $m$ is : $v=\sqrt{\frac{2 g R}{1+\frac{m}{M}}}$.

[$D$] The velocity of the block $M$ is: $V=-\frac{m}{M} \sqrt{2 g R}$.

  • [IIT 2017]

Three balls, $A, B$ and $C$ are released and all reach the point $X$ (shown in the figure). Balls $A$ and $B$ are released from two identical structures, one kept on the ground and the other at height $h$, from the ground as shown in the figure. They take time $t_A$ and $t_B$ respectively to reach $X$ (time starts after they leave the end of the horizontal portion of the structure). The ball $C$ is released from a point at height $h$, vertically above $X$ and reaches $X$ in time $t_C$. Choose the correct option.

  • [KVPY 2020]

A particle $(\mathrm{m}=1\; \mathrm{kg})$ slides down a frictionless track $(AOC)$ starting from rest at a point $A$ (height $2\; \mathrm{m}$ ). After reaching $\mathrm{C}$, the particle continues to move freely in air as a projectile. When it reaching its highest point $P$ (height $1 \;\mathrm{m}$ ). the kinetic energy of the particle (in $\mathrm{J}$ ) is : (Figure drawn is schematic and not to scale; take $\left.g=10 \;\mathrm{ms}^{-2}\right)$

  • [JEE MAIN 2020]

A neutron moving with a speed $'v'$ makes a head on collision with a stationary hydrogen atom in ground state . The minimum kinetic energy of the neutron for which inelastic collision will take place is....$eV$

  • [JEE MAIN 2016]