Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

A sphere of mass $m$ travelling at constant speed $v$ strike another sphere of same mass. If  coefficient of restitution is $e$, then ratio of velocity of both spheres just after collision is :-

A

$\frac{1-e}{1+e}$

B

$\frac{1+e}{1-e}$

C

$\frac{e+1}{e-1}$

D

$\frac{e-1}{e+1}$

Solution

$\mathrm{V}_{1}=\frac{\mathrm{m}_{1}-\mathrm{em}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}} \mathrm{u}_{1}+\frac{(1+\mathrm{e}) \mathrm{m}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}} \mathrm{u}_{2}$

$\mathrm{V}_{2}=\frac{(1+\mathrm{e}) \mathrm{m}_{1}}{\mathrm{m}_{1}+\mathrm{m}_{2}} \mathrm{u}_{1}+\frac{\mathrm{m}_{2}-\mathrm{em}_{1}}{\mathrm{m}_{1}+\mathrm{m}_{2}} \mathrm{u}_{2}$

$\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}, \quad \mathrm{u}_{2}=0$

$\frac{V_{1}}{V_{2}}=\frac{m-e m}{2 m} u_{1} \times \frac{m+m}{(1+e) m} \frac{1}{u_{1}}$

$\frac{V_{1}}{V_{2}}=\frac{1-e}{1+e}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.