Gujarati
Hindi
9-1.Fluid Mechanics
normal

A spherical solid ball of volume $V$ is made of a material of density $\rho _1$ . It is falling through a liquid of density $\rho _2(\rho _2 < \rho _1)$ . Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed $v$ , i.e., $F_{viscous} =\, -kv^2 (k > 0)$ . Then terminal speed of the ball is

A

$\sqrt {\frac{{Vg({\rho _1} - {\rho _2})}}{k}} $

B

$\frac{{Vg{\rho _1}}}{k}$

C

$\sqrt {\frac{{Vg{\rho _1}}}{k}} $

D

$\frac{{Vg({\rho _1} - {\rho _2})}}{k}$

Solution

Weight – upthrust $=\mathrm{F}_{\mathrm{vis}}$

$\Rightarrow \mathrm{V} \rho_{1} \mathrm{g}-\mathrm{V} \rho_{2} \mathrm{g}=\mathrm{kv}_{t}^{2}$

$\Rightarrow \mathrm{V}_{\mathrm{t}}=\sqrt{\frac{\mathrm{vg}\left(\rho_{1}-\rho_{2}\right)}{\mathrm{k}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.