- Home
- Standard 11
- Physics
9-1.Fluid Mechanics
normal
A spherical solid ball of volume $V$ is made of a material of density $\rho _1$ . It is falling through a liquid of density $\rho _2(\rho _2 < \rho _1)$ . Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed $v$ , i.e., $F_{viscous} =\, -kv^2 (k > 0)$ . Then terminal speed of the ball is
A
$\sqrt {\frac{{Vg({\rho _1} - {\rho _2})}}{k}} $
B
$\frac{{Vg{\rho _1}}}{k}$
C
$\sqrt {\frac{{Vg{\rho _1}}}{k}} $
D
$\frac{{Vg({\rho _1} - {\rho _2})}}{k}$
Solution
Weight – upthrust $=\mathrm{F}_{\mathrm{vis}}$
$\Rightarrow \mathrm{V} \rho_{1} \mathrm{g}-\mathrm{V} \rho_{2} \mathrm{g}=\mathrm{kv}_{t}^{2}$
$\Rightarrow \mathrm{V}_{\mathrm{t}}=\sqrt{\frac{\mathrm{vg}\left(\rho_{1}-\rho_{2}\right)}{\mathrm{k}}}$
Standard 11
Physics
Similar Questions
normal
normal