A wind with speed $40\,m/s$ blows parallel to the roof of a house. The area of the roof is $250\,m^2.$ Assuming that the pressure inside the house is atmospheric pressure, the force exerted by the wind on the roof and the direction of the force will be $(\rho _{air} = 1.2\,kg/m^3)$
$4.8 \times 10^5\,N,$ upwards
$2.4 \times 10^5\,N,$ upwards
$2.4 \times 10^5\,N,$ downwards
$4.8 \times 10^5\,N,$ downwards
A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upwards with a net acceleration of $g/3$. The fraction of volume immersed in the liquid will be :-
Application of Bernoulli's theorem can be seen in
In a $U-$ tube experiment, a column $AB$ of water is balanced by a column $‘CD’$ of oil, as shown in the figure. Then the relative density of oil is
Air is streaming past a horizontal aeroplane wing such that its speed is $120\, m/s$ over the upper surface and $90\, m/s$ at the lower surface. If the density of air is $1.3\, kg/m^3$ and the wing is $10\, m$ long and has an average width of $2\, m$ , then the difference of the pressure on the two sides of the wing is ........ $N/m^2$
A liquid is kept in a cylindrical vessel which is being rotated about a vertical axis through the centre of the circular base. If the radius of the vessel is $r$ and angular velocity of rotation is $\omega $ , then the difference in the heights of the liquid at the centre of the vessel and the edge is