1. Electric Charges and Fields
hard

A spherically symmetric charge distribution is characterised by a charge density having the following variations

$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$ for $r < R$

$\rho (r)\,=\,0$ for $r\, \ge \,R$

Where $r$ is the distance from the centre of the charge distribution $\rho _0$ is a constant. The electric field at an internal point $(r < R)$ is

A

$\frac{{{\rho _0}}}{{4{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$

B

$\frac{{{\rho _0}}}{{{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$

C

$\frac{{{\rho _0}}}{{3{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$

D

$\frac{{{\rho _0}}}{{12{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$

(JEE MAIN-2014)

Solution

Let us consider a spherical shell of radius $x$ and thickness $dx.$

Charge on this shell

$\mathrm{dq}=\rho 4 \pi \mathrm{x}^{2} \mathrm{dx}=\rho_{0}\left(1-\frac{\mathrm{x}}{\mathrm{R}}\right) .4 \pi \mathrm{x}^{2} \mathrm{dx}$

$\therefore$ Total charge in the spherical region from centre to $r(r < R)$

$q=\int d q=4 \pi \rho_{0} \int_{0}^{T}\left(1-\frac{x}{R}\right) x^{2} d x$

$=4 \pi \rho_{0}\left[\frac{x^{3}}{3}-\frac{x^{4}}{4 R}\right]_{0}^{t}$

$=4 \pi \rho_{0}\left[\frac{r^{3}}{3}-\frac{r^{4}}{4 R}\right]$

$=4 \pi \rho_{0} r^{3}\left[\frac{1}{3}-\frac{r}{4 R}\right]$

$\therefore$ Electric field atr, $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{r}^{2}}$

$ = \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{4\pi {\rho _0}{r^3}}}{{{r^2}}} \cdot \left[ {\frac{1}{3} – \frac{r}{{4R}}} \right]$

$=\frac{\rho_{0}}{\varepsilon_{0}}\left[\frac{\tau}{3}-\frac{\tau^{2}}{4 R}\right]$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.