एक गोलीय सममिती आवेश वितरण आवेश घनत्व का निम्नलिखित विचरण रखता है : $\rho(r)=\rho_{o}\left(1-\frac{r}{R}\right) r < R$ के लिए $\rho( r )=0 \quad r \geqslant R$ के लिए जहाँ $r$ आवेश वितरण के केन्द्र से दूरी हैं और $\rho_{ o }$ एक स्थिरांक है। एक अन्तः बिन्दु $( r < R )$ पर विद्युत क्षेत्र है
$\frac{{{\rho _0}}}{{4{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$
$\frac{{{\rho _0}}}{{{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$
$\frac{{{\rho _0}}}{{3{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$
$\frac{{{\rho _0}}}{{12{\varepsilon _0}}}\left( {\frac{r}{3} - \frac{{{r^2}}}{{4R}}} \right)$
एक चालक गोले की त्रिज्या $R = 20$ सेमी. है। इसे $Q = 16\,\mu C$ आवेश दिया गया। इसके केन्द्र पर तीव्रता $\overrightarrow E $ है
दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।
$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र
यहाँ आरेख में, किसी गोलाकार कोश (शैल) के कोटर के भीतर दो बिन्दु-आवेश $+ Q$ तथा $- Q$ दर्शाये गये हैं। ये आवेश कोटर की सतह के निकट इस प्रकार रखे गये हैं कि, एक आवेश कोश के केन्द्र की एक ओर है और दूसरा केन्द्र के विपरीत दूसरी ओर। यदि, भीतरी तथा बाहरी सतहों (पृष्ठों) पर, पृष्ठ आवेश क्रमशः $\sigma_{1}$ तथा $\sigma_{2}$ और नेट आवेश क्रमशः $Q_{1}$ तथा $Q _{2}$ हो तो :
दो अनन्त लम्बाई के समान्तर तार जिन पर रेखीय आवेश घनत्व क्रमश: ${\lambda _1}$ और ${\lambda _2}$ हैं, $R$ मीटर की दूरी पर रखे हैं। उनमें से किसी एक की एकांक लम्बाई पर बल होगा $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$
कुल आवेश $2 Q$ को त्रिज्या $R$ के गोले में इस प्रकार वितरित करते हैं कि आवेश घनत्व सम्बन्ध $\rho( r )= kr$ से दिया जाता है जहाँ $r$, केन्द्र से दूरी है। दो बराबर $Q$ आवेशों $A$ तथा $B$ को केन्द्र से $a$ दूरी पर व्यासीय विपरीत बिन्दुओं पर रखा गया है। यदि $A$ और $B$ कोई बल अनुभव नहीं करते हैं, तो ?