A spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring some elongation and released.
The block may stop before the spring attains its mean position.
The block must stop with spring having some compression.
The block may stop with spring having some compression.
Both $(A)$ and $(C)$
The potential energy of a weight less spring compressed by a distance $ a $ is proportional to
The potential energy of a certain spring when stretched through a distance $S$ is $10 \,joule$. The amount of work (in $joule$) that must be done on this spring to stretch it through an additional distance $S$ will be
A ball of mass $4\, kg$, moving with a velocity of $10\, ms ^{-1}$, collides with a spring of length $8\, m$ and force constant $100\, Nm ^{-1}$. The length of the compressed spring is $x\, m$. The value of $x$, to the nearest integer, is ........ .
A block of mass $M$ is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has force constant value $k.$ The mass is released from rest with the spring initially unstretched. The maximum extension produced in the length of the spring will be
An elastic spring under tension of $3 \mathrm{~N}$ has a lengtha. Its length is $b$ under tension $2 \mathrm{~N}$. For its length$(3 a-2 b)$, the value of tension will be_______. $\mathrm{N}$.