A block of mass $m$, lying on a smooth horizontal surface, is attached to a spring (of negligible mass) of spring constant $k$. The other end of the spring is fixed, as shown in the figure. The block is initially at rest in a equilibrium position. If now the block is pulled with a constant force $F$, the maximum speed of the block is
$\frac{{2F}}{{\sqrt {mk} }}$
$\frac{F}{{\pi \sqrt {mk} }}$
$\frac{{\pi F}}{{\sqrt {mk} }}$
$\frac{F}{{\sqrt {mk} }}$
Find the maximum tension in the spring if initially spring at its natural length when block is released from rest.
The potential energy of a long spring when stretched by $2\,cm$ is $U$. If the spring is stretched by $8\,cm$, potential energy stored in it will be $.......\,U$
Two identical blocks $A$ and $B$, each of mass $'m'$ resting on smooth floor are connected by a light spring of natural length $L$ and spring constant $K$, with the spring at its natural length. $A$ third identical block $'C'$ (mass $m$) moving with a speed $v$ along the line joining $A$ and $B$ collides with $A$. the maximum compression in the spring is
A spring $40\,mm$ long is stretched by the application of a force. If $10\, N$ force is required to stretch the spring through $1\, mm$, then work done in stretching the spring through $40\, mm$ is ............. $\mathrm{J}$
A toy gun fires a plastic pellet with a mass of $0.5\ g$. The pellet is propelled by a spring with a spring constant of $1.25\ N/cm$, which is compressed $2.0\ cm$ before firing. The plastic pellet travels horizontally $10\ cm$ down the barrel (from its compressed position) with a constant friction force of $0.0475\ N$. What is the speed (in $SI\ units$) of the bullet as it emerges from the barrel?