A spring of spring constant $5 \times 10^3\, N/m$ is stretched initially by $5\,cm$ from the unstretched position. Then the work required to stretch it further by another $5\, cm$ is .............. $\mathrm{N}$  $-$ $\mathrm{m}$

  • A

    $6.25$

  • B

    $12.50$

  • C

    $18.75$

  • D

    $25$

Similar Questions

A block of mass $0.50\, kg$ is moving with a speed of $2.00\, ms^{-1}$ on a smooth surface. It strikes another mass of $1.00\, kg$ and then they move together as a single body. The energy loss during the collision is .............. $\mathrm{J}$

A particle of mass $m$ is moving in a circular path of constant radius $r$ such that its centripetal acceleration $a_c$ is varying with time $t$ as, $a_c = k^2rt^2$, The power delivered to the particle by the forces acting on it is

A particle is made to move from the origin in three spells of equal distances, first along the $x-$ axis, second parallel to $y-$ axis and third parallel to $z-$ axis. One of the forces acting on it is has constant magnitude of $50\,N$ and always acts along the direction of motion. Work done by this force in the three spells of motion are equal and total work done in all the three spells is $300\,J$. The final coordinates of the particle will be

$A$ man who is running has half the kinetic energy of the boy of half his mass. The man speeds up by $1 \, m/s$ and then has the same kinetic energy as the boy. The original speed of the man was

A mass of $0.5\, kg$ moving with a speed of $1.5\, m/s$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $k=50\,N/m$. The maximum compression of the spring would be ................. $\mathrm{m}$